DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously.

نویسندگان

  • Xiangjin Wei
  • Junfeng Xu
  • Hongnian Guo
  • Ling Jiang
  • Saihua Chen
  • Chuanyuan Yu
  • Zhenling Zhou
  • Peisong Hu
  • Huqu Zhai
  • Jianmin Wan
چکیده

The three most important agronomic traits of rice (Oryza sativa), yield, plant height, and flowering time, are controlled by many quantitative trait loci (QTLs). In this study, a newly identified QTL, DTH8 (QTL for days to heading on chromosome 8), was found to regulate these three traits in rice. Map-based cloning reveals that DTH8 encodes a putative HAP3 subunit of the CCAAT-box-binding transcription factor and the complementary experiment increased significantly days to heading, plant height, and number of grains per panicle in CSSL61 (a chromosome segment substitution line that carries the nonfunctional DTH8 allele) with the Asominori functional DTH8 allele under long-day conditions. DTH8 is expressed in most tissues and its protein is localized to the nucleus exclusively. The quantitative real-time PCR assay revealed that DTH8 could down-regulate the transcriptions of Ehd1 (for Early heading date1) and Hd3a (for Heading date3a; a rice ortholog of FLOWERING LOCUS T) under long-day conditions. Ehd1 and Hd3a can also be down-regulated by the photoperiodic flowering genes Ghd7 and Hd1 (a rice ortholog of CONSTANS). Meanwhile, the transcription of DTH8 has been proved to be independent of Ghd7 and Hd1, and the natural mutation of this gene caused weak photoperiod sensitivity and shorter plant height. Taken together, these data indicate that DTH8 probably plays an important role in the signal network of photoperiodic flowering as a novel suppressor as well as in the regulation of plant height and yield potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonfunctional alleles of long‐day suppressor genes independently regulate flowering time

Due to the remarkable adaptability to various environments, rice varieties with diverse flowering times have been domesticated or improved from Oryza rufipogon. Detailed knowledge of the genetic factors controlling flowering time will facilitate understanding the adaptation mechanism in cultivated rice and enable breeders to design appropriate genotypes for distinct preferences. In this study, ...

متن کامل

Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice.

Success of modern agriculture relies heavily on breeding of crops with maximal regional adaptability and yield potentials. A major limiting factor for crop cultivation is their flowering time, which is strongly regulated by day length (photoperiod) and temperature. Here we report identification and characterization of Days to heading 7 (DTH7), a major genetic locus underlying photoperiod sensit...

متن کامل

Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice

Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs ...

متن کامل

Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).

Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was...

متن کامل

پاسخ عملکرد دانه هیبریدهای ذرت به تنش خشکی در مراحل مختلف رشد

Drought stress is the most important limiting factor in crop plants including maize (Zea mays L.), which is the third important world crop after wheat and rice. Water deficiency at different growth stages affects maize yield differently. To examine the response of four maize hybrids to drought stress at different growth stages, a field experiment was carried out as a split plot based on complet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 153 4  شماره 

صفحات  -

تاریخ انتشار 2010